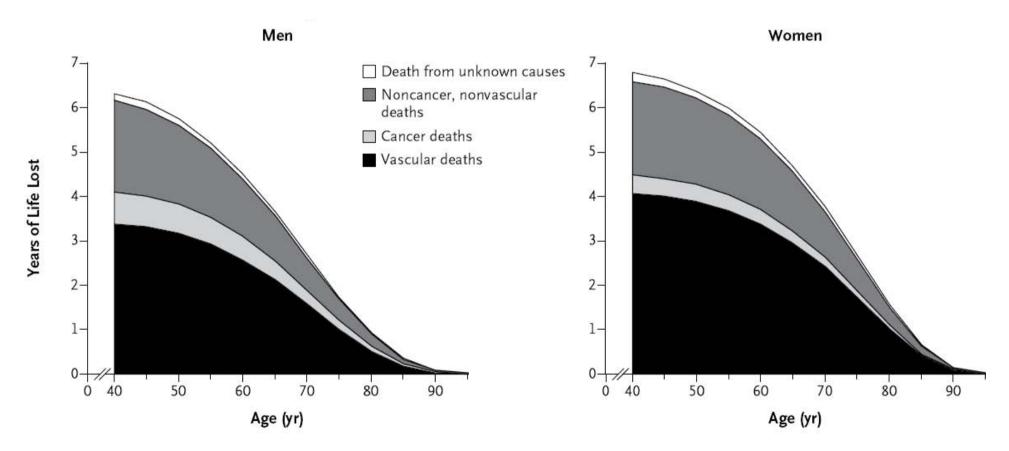
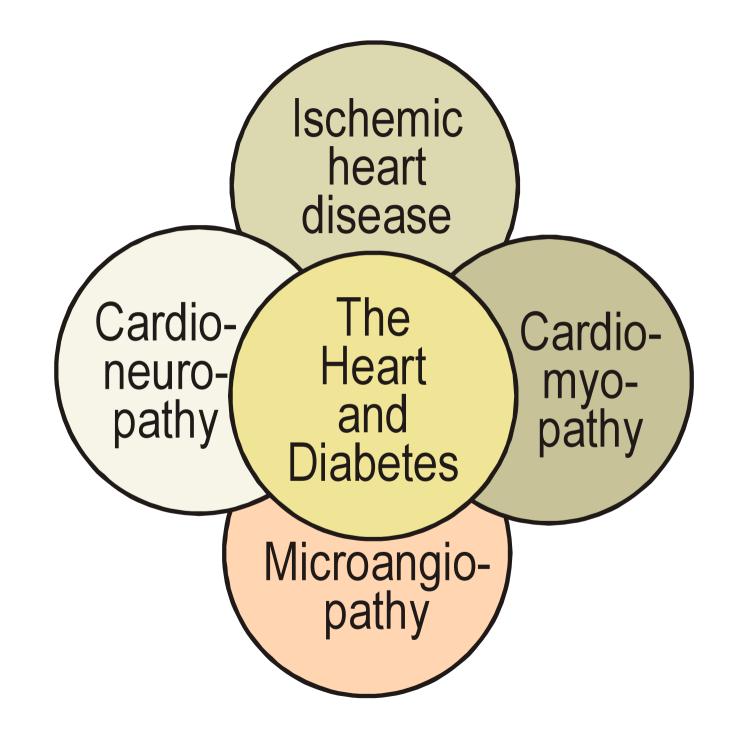
Diabetic cardiomyopathy: Does it exist?



Prof. Dr. Oliver Schnell

Diabetes Research Institute at the Helmholtz Center Munich, Germany


Diabetes mellitus, fasting glucose, and risk of cause-specific death

Estimated future years of life lost owing to diabetes

Diabetic cardiomyopathy

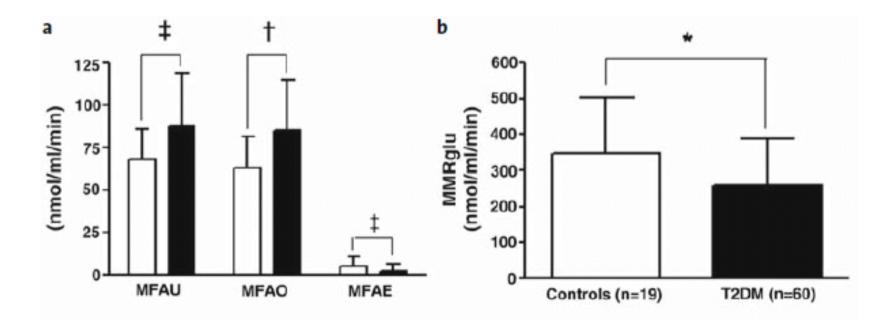
Originally proposed as a specific diabetic angiopathy by Lundbaek in 1954

Definition

A term referred to as the presence of myocardial disease in diabetic patients, which cannot be ascribed to extramyocardial coronary artery stenosis.

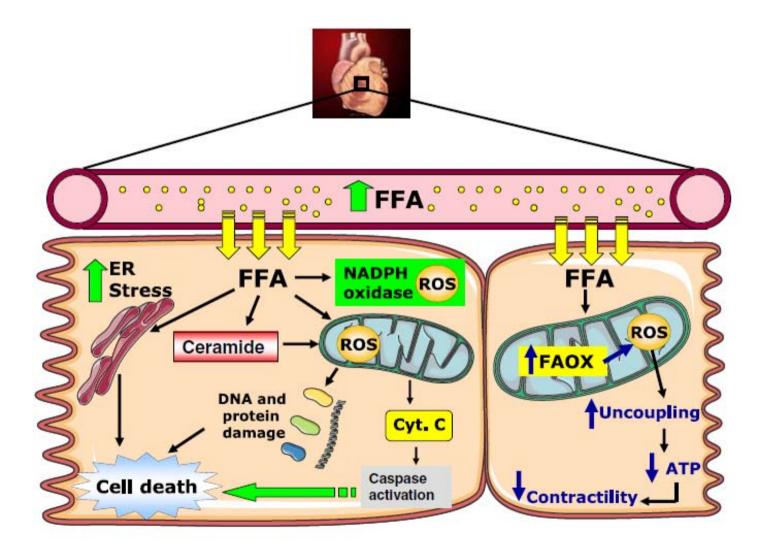
Definition of diabetic cardiomyopathy

A distinct entity characterized by the presence of abnormal myocardial performance or structure in the absence of epicardial coronary artery disease, hypertension and significant valvular disease

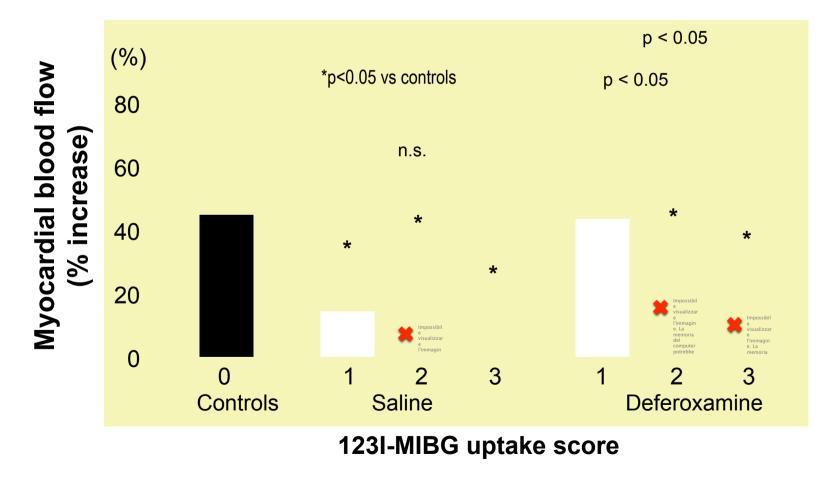

Prevalence of diabetes in heart failure trials

Trial	Journal	Year	%
CONSENSUS 1 SOLVD	New Engl J Med New Engl J Med	1988 1991	23 21
NETWORK	Europ Heart J	1998	2 T 10
ATLAS	Europ Heart J	2000	19
MERIT-HF	JAMA	2000	24
RESOLVD	Europ Heart J	2000	35

Diastolic heart failure characterizes diabetic cardiomyopathy and accounts for approximately 50% of all cases with heart failure

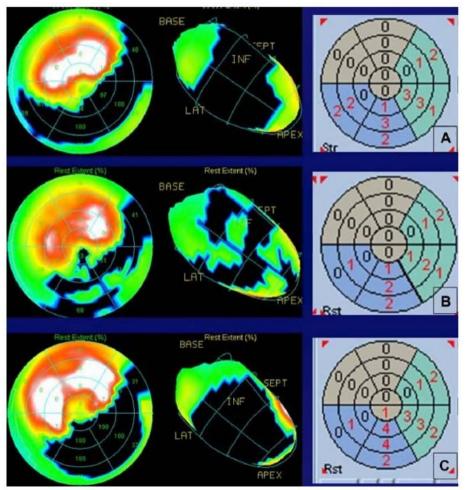

Nonischemic diabetic cardiomyopathy: Myocardial fatty acid uptake (MFAU), oxidation (MFAO), esterification (MFAE) and metabolic rate of glucose uptake (MMRglu) assessed by PET

FA-induced cardiac dysfunction in diabetes



Rijzewijk LJ et al. J Am Coll Cardiol 2009; 54:1524-1532

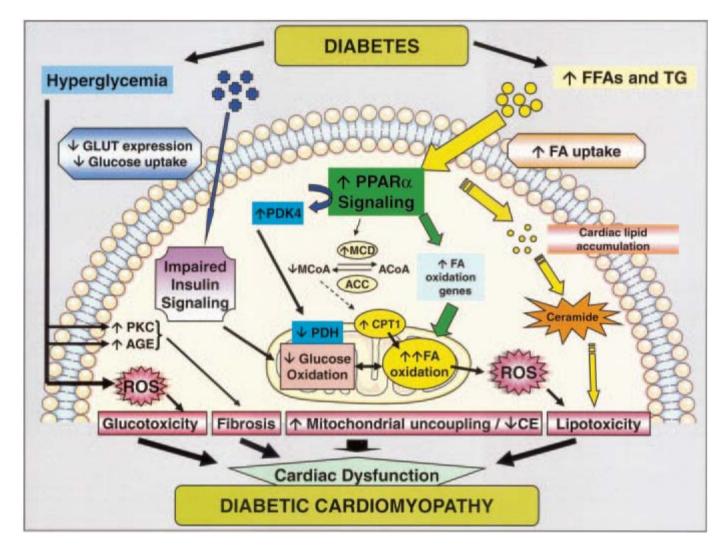
Iron-catalyzed Fenton reaction


Increase in myocardial blood flow with deferoxamine is related to the extent of cardiac sympathetic denervation

Hattori N, Schnell O et al., Diabetic Medicine (2003) 20: 375-381

Nuclear diagnostic imaging in diabetic cardiomyopathy Perfusion and neurotransmission

Oxidative stress: a contributor to diabetic cardiomyopathy

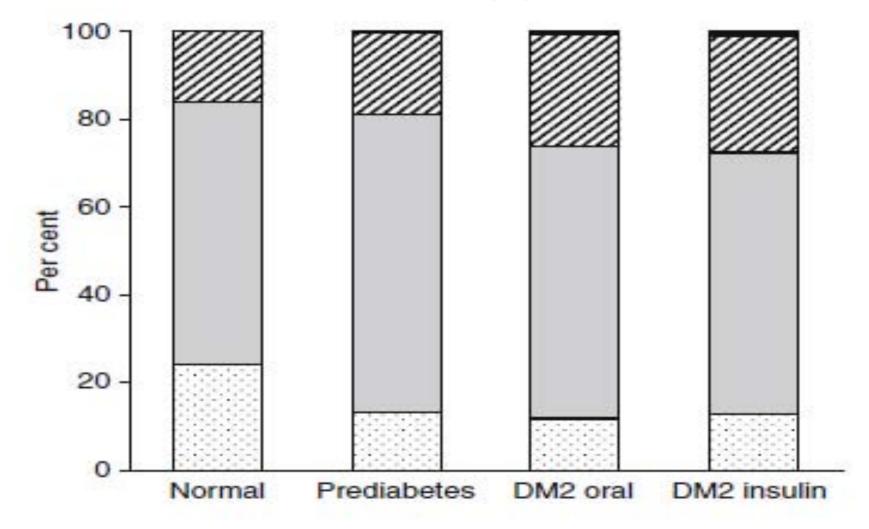

- Excess formation of reactive oxygen species (ROS) induced by hyperglycemia, elevated FFA, leptin
- -Reduction of antioxidant defenses
- –Increase in mitochrondrial ROS generation
- –ROS activate genes of pathways involved in the pathogenesis of diabetic cardiomyopathy:

inflammation endothelial dysfunction cell death cardiovascular remodeling

 Activation of transcription factors, polyol and hexosamine pathways, tyrosine kinase pathways

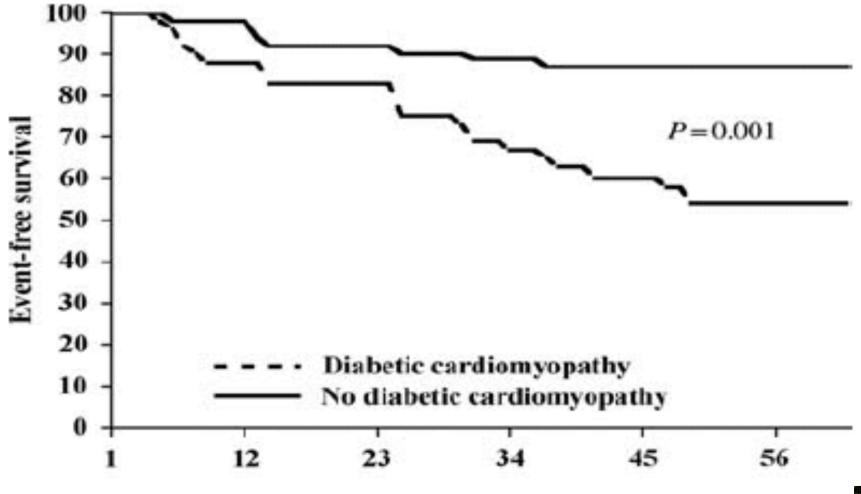
Hyperglycemia and altered substrate metabolism, ROS, and oxidative stress

Boudina E, Abel D. Circulation 2007; 115:3213-3223


Natural course of diabetic cardiomyopathy

• •			
	Molecular and cellular events	Alterations in structure and morphology	Myocardial performance
Early phase	 Metabolic disturbances: hyperglycemia, increased circulating FFA, insulin resistance Altered Ca2+ homeostasis Endothelial dysfunction 	 insignificant changes in myocardial structure: normal LV dimensions, wall thickness, and mass 	 impaired diastolic compliance with normal systolic function, or no obvious functional changes
Middle phase	 Cardiomyocyte injury, apoptosis, necrosis Activation of cardiac fibroblasts leading to myocardial fibrosis 	 minor changes in structure: slightly increased heart mass, wall thickness or size. cardiomyocyte hypertrophy insignificant myocardial vascular changes 	 significant changes in diastolic and systolic function
Late phase	 Hypertension Coronary artery disease Microangiopathy Cardiac autonomic neuropathy 	 Significant changes in structure: increased heart size, wall thickness and mass Myocardial microvascular disease 	 Abnormal diastolic and systolic function

Battiprolu PK et al. Drug Discov Today Dis Mech. 2010; 7(2): e135–e143. doi:10.1016/j.ddmec.2010.08.001


Severity of diastolic dysfunction among patients with various glycemic status

Stahrenberg R et al, Diabetologia 2010; 53:1331-1340

Event-free survival in patients with and without diabetic cardiomyopathy

Kiencke S et al. Eur J Heart Failure 2010; 12:951-957

Structural and morphological features of DCM

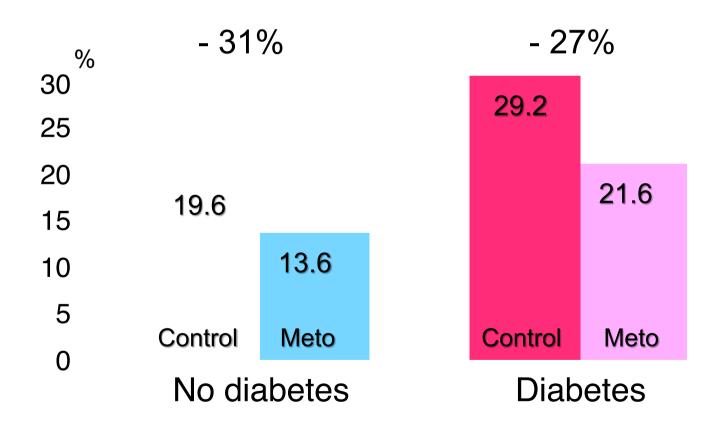
- Near-normal end-diastolic volume
- Elevated left ventricular mass relative to chamber volume
- Elevated wall thickness to chamber radius
- Myocardial hypertrophy
- Myocardial fibrosis
- Intramyocyte lipid accumulation

Functional features of DCM

- Abnormal diastolic function (observed in up to 75% of asymptomatic diabetic patients)
- Compromised left ventricular systolic function
- Clinical heart failure

Diagnostic tools and typical findings observed in diabetic cardiomyopathy

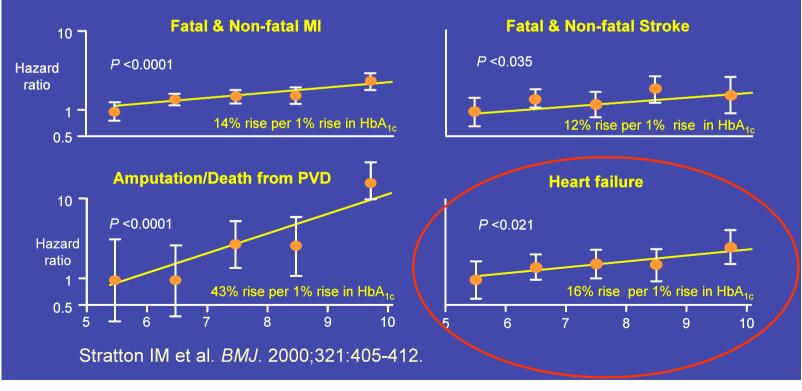
: Diagnostic tool	Modality	Results
Echocardiography	 Transmitral Doppler Pulmonary venous blood flow Color M-mode Tissue Doppler imaging Tissue Doppler imaging-strain Tissue Doppler imaging-strain-rate 	 Increased left ventricular mass and diameter Diastolic dysfunction by flows Systolic dysfunction Decreased tissue velocities
Magnetic resonance imaging (MRI)	 MRI Late gadolinium enhancement MRI 1H-magnetic res. spectroscopy 31P-magnetic res. spectroscopy 	 Increased left ventricular mass and diameter Diastolic and systolic dysfunction Myocardial fibrosis Triglyceride content Myoc. phosphocreatine to ATP ratio
Serum biomarkers	 Serum aminoterminal propeptide of type I and type III, carboxyterminal telopeptide of type I collagen Matrix metalloproteinases, tissue inhibitor metalloproteinases B-natriuretic peptide (BNP) 	 Extracellular matrix turnover BNP left ventricular synthesis


Effect of angiotensin receptor blockade in heart failure trials by diabetic state

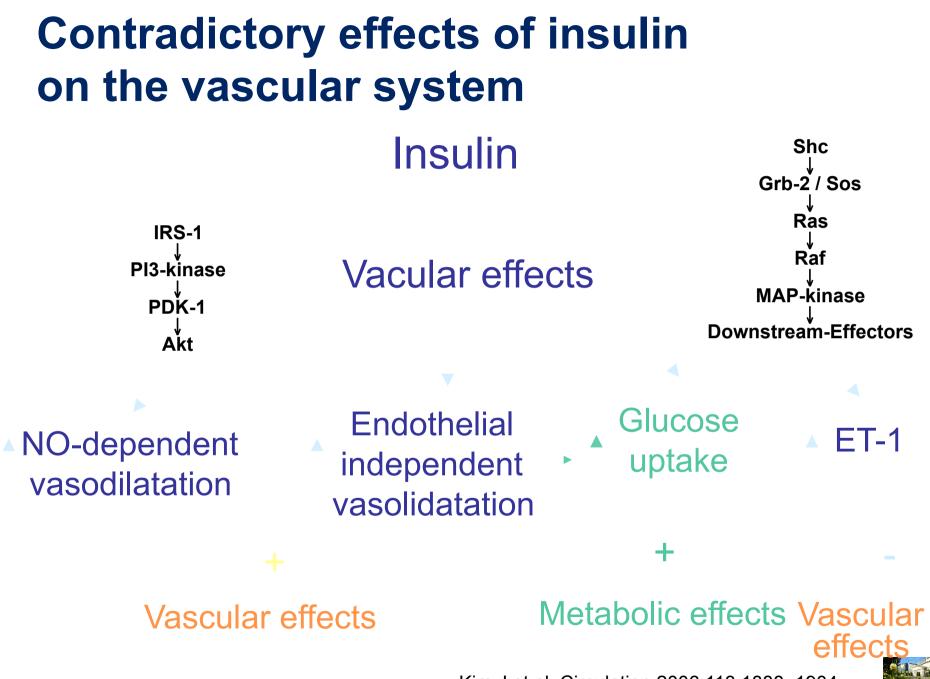
Trial	Patients no	Diabetes %	Morta	lity reduction %
CONSENSUS	253	18	31	after 1 year
SAVE	2231	22	19	all cause
			21	CVD
ATLAS	3164	19	14	with high dose
GISSI 4	18131	15	30	after 6 weeks

Effect of beta-blockade Subgroup analysis from the MERIT-HF trial

Mortality or hospitalisation for HF after 1 year

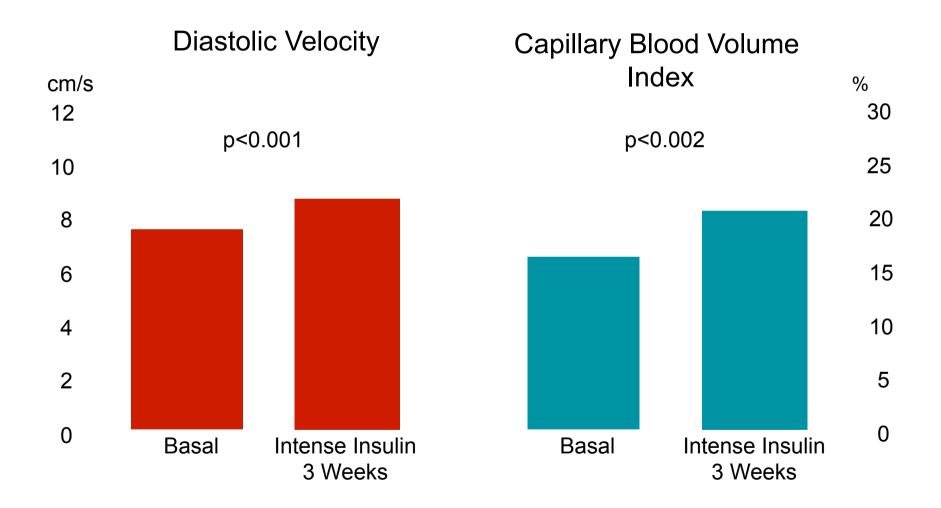


90


UKPDS: HbA1c and heart failure

Diabetes, Glucose, and CV Disease

- Diabetes (DM) is an established risk factor for CVD
- In DM, higher glucose levels/HbA1c predict higher CV risk



Kim J et al. Circulation 2006;113:1888–1904

Diabetes Can glucose control improve diastolic function?

von Bibra, Rydén et al Heart 2004; 90:1483

D.

Diabetes Can glucose control improve diastolic function

Insulin glargine + Insulin Aspart

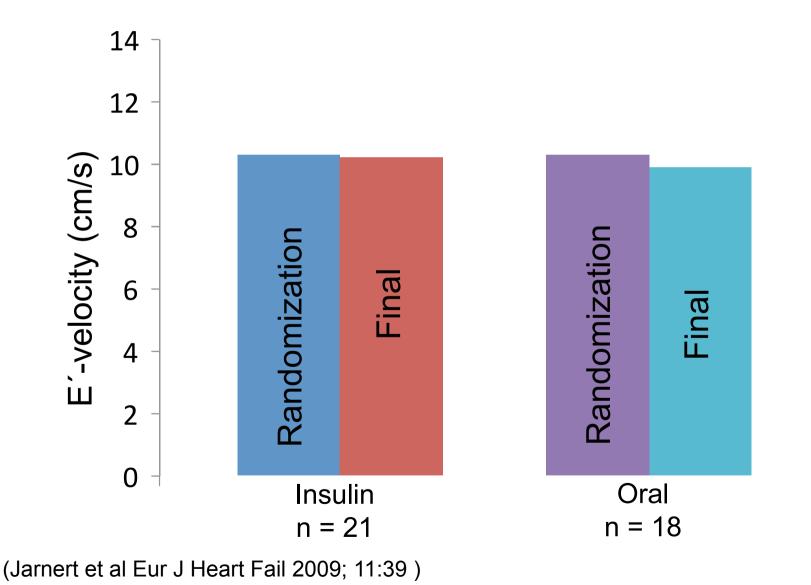
Type 2 diabetes R Diastolic dysfunction

Selfcontrol and diary

Screening

Echo8 weeksDiastol dysfunctRun inFBG > 6,1Run inBMI >24 - 31Titration ofHbA1c >6,5 - 8Insulin &LaboratoryOGLDspecimens

Oral glucose lowering agents Metformin + Repaglinid


4 months

At first and final visit Echo + DTI & Contrast HbA1c, FBG Lab

(Jarnert et al Eur J Heart Fail 2009; 11:39)

Diabetes Can glucose control improve diastolic function ?

Treatment approaches

Glycemic control

Further studies needed before aggressive glucose normalisation can be recommended as a possibility to improve prognosis

Neurohormonal Antagonism

The use of ACE-inhibitors, angiotensin receptor blockers, and aldosteron antagonists in preventing the morphological and functional abnormalities being associated with diabetic cardiomyopathy is supported

Novel Therapies

In experimental stages (e.g. AGE inhibitors, AGE cross-link breakers, copper chelation therapy) or to be studied specifically in patients with diabetic cardiomyopathy (Trimetazidine [modulation of FFA metabolism], Exenatide)

Echocardiographic findings

The association between diabetic cardiomyopathy and the presence of cardiac hypertrophy and myocardial stiffness, both independent of hypertension, is supported by several studies

Authors	Year	Findings	Population Sample (n)
Galderisi et al ⁹	1991	Increase of LVM in women	111 DM
Framingham Heart Study			381 IGT
Lee et al ¹⁰	1997	Increase of LVM in both genders	2697 DM or IGT
Cardiovascular Health Study			>65 y
Devereux et al ¹¹	2000	Increase of LVM, reduction of EFS and MFS	1810 DM
Strong Heart Study			
Palmieri et al ¹²	2001	Increase of LVM and RWT, reduction of MFS	386 DM + HTN
HyperGEN Study			
Ilercil et al ¹³	2001	Increase of LVM and RWT	457 IGT
Strong Heart Study			
Bella et al ¹⁴	2001	Progressive increase of LVM and reduction of EFS and MFS in DM and DM + HTN	642 DM
Strong Heart Study			874 DM + HTN
Liu et al ¹⁵	2001	Progressive reduction of E/A ratio and prolongation of DT in DM and DM + HTN	616 DM
Strong Heart Study			671 DM + HTN
Rutter et al ¹⁶	2003	Progressive increase of LVM, RWT, and LA in IGT and DM	186 DM
Framingham Heart Study			343 IGT

DM = diabetes mellitus; EFS = endocardial fractional shortening; HTN = hypertension; IGT = impaired glucose tolerance; LA = left atrium; LVM = left ventricular mass; MFS = midwall fractional shortening; RWT = relative wall thickness.

Insulin resistance: Predictor of heart failure

Uppsala Longitudinal Study

(n = 1,188 Men ≥ 70 Jahre; Follow-up 8.9 Jahre)

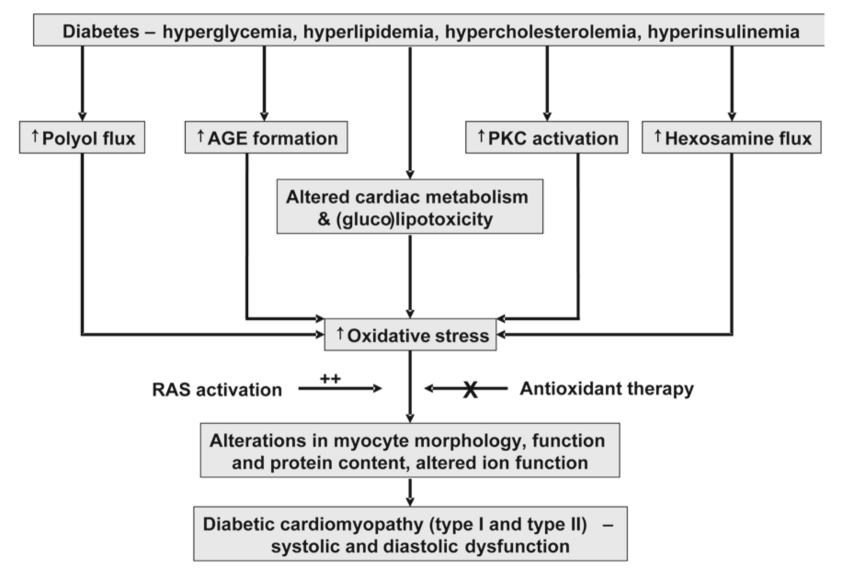
	0,5			1,0	1,5		
1-SD increase of 2h- G (OGT)				1,08	1,44		1,93
F-S-Proinsulin				1,02	1,29	1,64	
BMI				1,11	1,35	1,65	
Waist (cm)				1,10	1,36	1,69	
1-SD increase of G- disposal	0,51	0,66	0,86				

When adding G-disposal to the Cox-models, obesity parameters were no longer significant CHF predictors

Stages of diabetic cardiomyopathy

Stages	Characteristics	Functional features	Structural features	Study methods
Early stage	Depletion of GLUT4 Increased FFA Carnitine deficiency Ca ²⁺ homeostasis changes Insulin resistance	No overt functional abnormalities or possible overt diastolic dysfunction but normal ejection fraction	Normal LV size, wall thickness, and mass	Sensitive methods such as strain, strain rate, and myocardial tissue velocity
Middle stage	Apoptosis and necrosis Increased AT II Reduced IGF-I Increased TGF-β1 Mild CAN	Abnormal diastolic dysfunction and normal or slightly decreased ejection fraction	Slightly increased LV mass, wall thickness, or size	Conventional echocardiography or sensitive methods such as strain, strain rate, and myocardial tissue velocity
Late stage	Microvascular changes Hypertension CAD Severe CAN	Abnormal diastolic dysfunction and ejection fraction	Significantly increased LV size, wall thickness, and mass	Conventional echocardiography

AT II, Angiotensin II; CAD, coronary artery disease.


Epidemiological data*

- Macrovascular complications (CAD, peripheral vascular disease, stroke) are 2–4 times more frequent in patients with diabetes compared to nondiabetic people¹
- In patients with T2DM, even under treatment of all associated CV risk factors and despite of a reduction of CV events by 50%, the CV mortality still remains high²
- Frequency of CAD is twice more common in patients with diabetes of both sexes. Death from CAD is 3 times more common in diabetic patients compared with nondiabetics (Framingham Study³)
- The prevalence of heart failure with preservation of systolic function among patients with diabetes is 19%–26% (ATLAS⁴: 19% – V-HeFT II⁵: 20% – SOLVD⁶: 26%)
- In summary, CV disease is 2–3 times more common, and survival is worse in people with diabetes vs. age- and sex-matched controls

*Voulgari C. Vasc Health & Risk Man 2010:6 883–6903 ¹Zimmet P. Nature 2001;414:782–787 / ²Haffner SM et al. N Engl J Med 1998;339:229–234 / ³Kannel WB. JAMA 1979;241:2035–2038 / ⁴Ryden L et al.Eur Heart J. 2000;21:1967–1978 / ⁵Cohn JN et al. N Engl J Med. 1991;325:303–310 / ⁶Shindler DM et al. Am J Cardiol 1996;77:1017–1020

Contributing factors to oxidative stress

Stratmann B et al. Herz 2010; 35:161-168

Clinical aspects of diabetic cardiomyopathy

- Diastolic heart failure characterizes diabetic cardiomyopathy and accounts for approximately 50% of all cases with heart failure
- Tissue Doppler imaging should be combined with conventional echocardiography to optimize the detection of diastolic dysfunction
- Cardiac hypertrophy and fibrosis indicate diabetic cardiomyopathy
- Because of a lack of clinical intervention trials, specifically in patients with diabetic cardiomyopathy, currently no evidencebased interventions for the specific treatment of diabetic cardiomyopathy may be present

Hyperglycemia and altered substrate metabolism, ROS, and oxidative stress Summary

- Altered Free Fatty Acid Metabolism: Increase in myocardial fatty acid uptake and oxidation, decrease in esterification
- Increase in oxidative stress characterized by an increase in ROS, early inactivation of NO Mediated by pathway activation: Polyol-, PKC, Hexosamine-Pathways, formation of AGE
- Impact on NO-dependent vascular effects of insulin action

